Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available June 1, 2026
-
Free, publicly-accessible full text available December 1, 2025
-
Based on past and expanded DNA sampling, the orthopteran families Stenopelmatidae and Anostostomatidae, as currently structured, are shown to be non-monophyletic. The splay-footed cricket genus Comicus is confirmed to be genetically distinct from all Stenopelmatidae. We add two specimens to our previously published phylogenetic tree for New World Stenopelmatus Jerusalem cricket species and report the first multilocus DNA recovery for S. ater from Costa Rica. Male internal genitalia may be of systematic value in Jerusalem crickets, but we believe they should be analyzed when in their unfolded, “physiologically functional” configuration, where morphological characters can be seen in more detail when compared to their preserved, folded state. We describe Stenopelmatus nuevoguatemalae n. sp. from Guatemala.more » « less
-
Abstract Cave crickets (Rhaphidophoridae) are insects of an ancient and wingless lineage within Orthoptera that are distributed worldwide except in Antarctica, and each subfamily has a high level of endemicity. Here, we show the comprehensive phylogeny of cave crickets using multi-gene datasets from mitochondrial and nuclear loci, including all extant subfamilies for the first time. We reveal phylogenetic relationships between subfamilies, including the sister relationship between Anoplophilinae and Gammarotettiginae, based on which we suggest new synapomorphies. Through biogeographic analyses based on divergence time estimations and ancestral range reconstruction, we propose novel hypotheses regarding the biogeographic history of cave crickets. We suggest that Gammarotettiginae in California originated from the Asian lineage when Asia and the Americas were connected by the Bering land bridge, and the opening of the western interior seaway affected the division of Ceuthophilinae from Tropidischiinae in North America. We estimate that Rhaphidophoridae originated at 138 Mya throughout Pangea. We further hypothesize that the loss of wings in Rhaphidophoridae could be the result of their adaptation to low temperatures in the Mesozoic era.more » « less
-
Locusts exhibit an extreme form of phenotypic plasticity and can exist as two alternative phenotypes, known as solitarious and gregarious phases. These phases, which can transform from one to another depending on local population density, show distinctly different behavioural characteristics. The proximate mechanisms of behavioural phase polyphenism have been well studied in the desert locust Schistocerca gregaria and the migratory locust Locusta migratoria, and what is known in these species is often treated as a general feature of locusts. However, this approach might be flawed, given that there are about 20 locust species that have independently evolved phase polyphenism. Using the Central American locust, Schistocerca piceifrons as a study system, we characterised the time-course of behavioural phase change using standard locust behavioural assays, using both a logistic regression-based model and analyses of separate behavioural variables. We found that for nymphs of S. piceifrons, solitarisation was a relatively fast, two-step process, but that gregarisation was a much slower process. Additionally, the density of the gregarisation treatment seemed to have no effect on the rate of phase change. These data are at odds with what we know about the time-course of behavioural phase change in S. gregaria, suggesting that the mechanisms of locust phase polyphenism in these two species are different and may not be phylogenetically constrained. Our study represents the most in-depth study of behavioural gregarisation and solitarisation in locusts to date.more » « less
-
Ensiferan orthopterans offer a key study system for acoustic communication and the process of insect hearing. Cyphoderris monstrosa (Hagloidea) belongs to a relict ensiferan family and is often used for evolutionary comparisons between bushcrickets (Tettigoniidae) and their ancestors. Understanding how this species processes sound is therefore vital to reconstructing the evolutionary history of ensiferan hearing. Previous investigations have found a mismatch in the ear of this species, whereby neurophysiological and tympanal tuning does not match the conspecific communication frequency. However, the role of the whole tympanum in signal reception remains unknown. Using laser Doppler vibrometry, we show that the tympana are tonotopic, with higher frequencies being received more distally. The tympana use two key modalities to mechanically separate sounds into two auditory receptor populations. Frequencies below approximately 8 kHz generate a basic resonant mode in the proximal end of the tympanum, whereas frequencies above approximately 8 kHz generate travelling waves in the distal region. Micro-CT imaging of the ear and the presented data suggest that this tonotopy of the tympana drive the tonotopic mechanotransduction of the crista acustica (CA). This mechanism represents a functional intermediate between simple tuned tympana and the complex tonotopy of the bushcricket CA.more » « less
-
Locusts and other migratory grasshoppers are transboundary pests. Monitoring and control, therefore, involve a complex system made up of social, ecological, and technological factors. Researchers and those involved in active management are calling for more integration between these siloed but often interrelated sectors. In this paper, we bring together 38 coauthors from six continents and 34 unique organizations, representing much of the social-ecological-technological system (SETS) related to grasshopper and locust management and research around the globe, to introduce current topics of interest and review recent advancements. Together, the paper explores the relationships, strengths, and weaknesses of the organizations responsible for the management of major locust-affected regions. The authors cover topics spanning humanities, social science, and the history of locust biological research and offer insights and approaches for the future of collaborative sustainable locust management. These perspectives will help support sustainable locust management, which still faces immense challenges such as fluctuations in funding, focus, isolated agendas, trust, communication, transparency, pesticide use, and environmental and human health standards. Arizona State University launched the Global Locust Initiative (GLI) in 2018 as a response to some of these challenges. The GLI welcomes individuals with interests in locusts and grasshoppers, transboundary pests, integrated pest management, landscape-level processes, food security, and/or cross-sectoral initiatives.more » « less
-
null (Ed.)Abstract Acoustic communication is enabled by the evolution of specialised hearing and sound producing organs. In this study, we performed a large-scale macroevolutionary study to understand how both hearing and sound production evolved and affected diversification in the insect order Orthoptera, which includes many familiar singing insects, such as crickets, katydids, and grasshoppers. Using phylogenomic data, we firmly establish phylogenetic relationships among the major lineages and divergence time estimates within Orthoptera, as well as the lineage-specific and dynamic patterns of evolution for hearing and sound producing organs. In the suborder Ensifera, we infer that forewing-based stridulation and tibial tympanal ears co-evolved, but in the suborder Caelifera, abdominal tympanal ears first evolved in a non-sexual context, and later co-opted for sexual signalling when sound producing organs evolved. However, we find little evidence that the evolution of hearing and sound producing organs increased diversification rates in those lineages with known acoustic communication.more » « less
-
Abstract Previously, sugarcane mosaic virus (SCMV) was developed as a vector for transient expression of heterologous genes inZea mays(maize). Here, we show that SCMV can also be applied for virus‐induced gene silencing (VIGS) of endogenous maize genes. Comparison of sense and antisense VIGS constructs targeting maizephytoene desaturase(PDS) showed that antisense constructs resulted in a greater reduction in gene expression. In a time course of gene expression after infection with VIGS constructs targetingPDS,lesion mimic 22(Les22), andIodent japonica 1(Ij1), efficient expression silencing was observed 2, 3, and 4 weeks after infection with SCMV. However, at Week 5, expression ofLes22andIj1was no longer significantly reduced compared with control plants. The defense signaling molecule jasmonate‐isoleucine (JA‐Ile) can be inactivated by 12C‐hydroxylation and hydrolysis, and knockout of these genes leads to herbivore resistance. JA‐Ile hydroxylases and hydrolases have been investigated in Arabidopsis, rice, andNicotiana attenuata. To determine whether the maize homologs of these genes function in plant defense, we silenced expression ofZmCYP94B1(predicted JA‐Ile hydroxylase) andZmJIH1(predicted JA‐Ile hydrolase) by VIGS with SCMV, which resulted in elevated expression of two defense‐related genes,Maize Proteinase Inhibitor(MPI) andRibosome Inactivating Protein 2(RIP2). AlthoughZmCYP94B1andZmJIH1gene expression silencing increased resistance toSpodoptera frugiperda(fall armyworm),Schistocerca americana(American birdwing grasshopper), andRhopalosiphum maidis(corn leaf aphid), there was no additive effect from silencing the expression of both genes. Further work will be required to determine the more precise functions of these enzymes in regulating maize defenses.more » « less
An official website of the United States government
